217 lines
6.8 KiB
Bash
Executable File
217 lines
6.8 KiB
Bash
Executable File
#!/bin/bash
|
|
|
|
# To be run by user llm to create the pod and container with
|
|
# PyTorch + HTTP API, to pull ColNomic embedding model if missing and
|
|
# to create the systemd service
|
|
|
|
set -e
|
|
|
|
# Environment variables
|
|
POD_NAME='pytorch_pod'
|
|
CTR_NAME='pytorch_ctr'
|
|
# NVIDIA NGC PyTorch container with CUDA 13.0 (25.08 release)
|
|
BASE_IMAGE='nvcr.io/nvidia/pytorch:25.08-py3'
|
|
CUSTOM_IMAGE='localhost/pytorch-api:25.08-cuda13.0'
|
|
HF_MODEL_ID='nomic-ai/colnomic-embed-multimodal-7b'
|
|
HF_MODEL_URL='https://huggingface.co/nomic-ai/colnomic-embed-multimodal-7b'
|
|
HOST_LOCAL_IP='127.0.0.1'
|
|
PYTORCH_HOST_PORT='8086'
|
|
PYTORCH_CONTAINER_PORT='8000'
|
|
BIND_DIR="$HOME/.local/share/$POD_NAME"
|
|
AI_MODELS_DIR="$BIND_DIR/ai-models"
|
|
HOST_PYTHON_APPS_DIR="$BIND_DIR/python-apps"
|
|
# Python app inside container to be executed
|
|
CTR_PY_APP="/python-apps/embed-multimodal-7b.py"
|
|
USER_SYSTEMD_DIR="$HOME/.config/systemd/user"
|
|
CONTAINERFILE="$BIND_DIR/containerfile"
|
|
|
|
# Prepare directories
|
|
mkdir -p "$AI_MODELS_DIR" "$HOST_PYTHON_APPS_DIR" "$USER_SYSTEMD_DIR"
|
|
|
|
# Generate containerfile
|
|
cat >"$CONTAINERFILE" <<'EOF'
|
|
# Containerfile for PyTorch + FastAPI + ColPali (ColNomic embed model support)
|
|
|
|
ARG BASE_IMAGE
|
|
FROM ${BASE_IMAGE}
|
|
|
|
# Hugging Face caches and Python apps directory (bind-mounted at runtime)
|
|
ENV HF_HOME=/models/hf \
|
|
TRANSFORMERS_CACHE=/models/hf/transformers \
|
|
HOST_PYTHON_APPS_DIR=/python-apps
|
|
|
|
# Ensure directories exist
|
|
RUN mkdir -p /models/hf/transformers /python-apps
|
|
|
|
# Install git (for colpali) and clean apt lists
|
|
RUN apt-get update && \
|
|
apt-get install -y --no-install-recommends git && \
|
|
rm -rf /var/lib/apt/lists/*
|
|
|
|
# Upgrade pip and install runtime dependencies:
|
|
# - fastapi, uvicorn for the HTTP API
|
|
# - transformers, accelerate, peft for HF + ColPali ecosystem
|
|
# - flash-attn to provide FlashAttention-2 kernels
|
|
# - colpali pinned to specific commit, installed WITHOUT deps to avoid
|
|
# overriding the PyTorch provided by the base image.
|
|
RUN python -m pip install --upgrade pip && \
|
|
python -m pip install --no-cache-dir \
|
|
fastapi \
|
|
"uvicorn[standard]" \
|
|
transformers \
|
|
accelerate \
|
|
peft && \
|
|
python -m pip install --no-cache-dir flash-attn --no-build-isolation && \
|
|
python -m pip install --no-cache-dir --no-deps \
|
|
"git+https://github.com/illuin-tech/colpali.git@97e389a" && \
|
|
python -m pip cache purge
|
|
|
|
# Make /python-apps importable by default
|
|
ENV PYTHONPATH=/python-apps:${PYTHONPATH}
|
|
|
|
WORKDIR /workspace
|
|
|
|
# Default command can be overridden by podman run.
|
|
CMD ["bash"]
|
|
EOF
|
|
|
|
# Build custom container image
|
|
podman build \
|
|
--build-arg BASE_IMAGE="$BASE_IMAGE" \
|
|
-t "$CUSTOM_IMAGE" \
|
|
-f "$CONTAINERFILE" \
|
|
"$(dirname "$CONTAINERFILE")"
|
|
|
|
# Create pod if not yet existing
|
|
if ! podman pod exists "$POD_NAME"; then
|
|
podman pod create -n "$POD_NAME" \
|
|
-p "$HOST_LOCAL_IP:$PYTORCH_HOST_PORT:$PYTORCH_CONTAINER_PORT"
|
|
echo "Pod '$POD_NAME' created (rc=$?)"
|
|
else
|
|
echo "Pod '$POD_NAME' already exists."
|
|
fi
|
|
|
|
# PyTorch + HTTP API container
|
|
# Remove old container
|
|
podman rm -f "$CTR_NAME"
|
|
# New container
|
|
podman run -d --name "$CTR_NAME" --pod "$POD_NAME" \
|
|
--device nvidia.com/gpu=all \
|
|
-e HF_MODEL_ID="$HF_MODEL_ID" \
|
|
-e HF_MODEL_URL="$HF_MODEL_URL" \
|
|
-e PYTORCH_CONTAINER_PORT="$PYTORCH_CONTAINER_PORT" \
|
|
-e CTR_PY_APP="$CTR_PY_APP" \
|
|
-v "$AI_MODELS_DIR":/models \
|
|
-v "$HOST_PYTHON_APPS_DIR":/python-apps \
|
|
"$CUSTOM_IMAGE" \
|
|
python "$CTR_PY_APP"
|
|
|
|
# Wait for API readiness (/health)
|
|
HEALTH_URL="http://$HOST_LOCAL_IP:$PYTORCH_HOST_PORT/health"
|
|
echo -n "Waiting for PyTorch API at $HEALTH_URL ..."
|
|
for attempt in $(seq 1 30); do
|
|
if curl -fsS "$HEALTH_URL" >/dev/null 2>&1; then
|
|
echo "ready."
|
|
break
|
|
fi
|
|
sleep 2
|
|
if [ "$attempt" -eq 30 ]; then
|
|
echo "timeout error." >&2
|
|
echo "Container logs:" >&2
|
|
podman logs "$CTR_NAME"
|
|
exit 1
|
|
fi
|
|
done
|
|
|
|
# Smoke tests
|
|
|
|
# GPU availability
|
|
GPU_JSON="$(
|
|
podman exec "$CTR_NAME" python -c '
|
|
import json, sys
|
|
try:
|
|
import torch
|
|
except Exception as e:
|
|
# Exit code 1 -> internal error (import torch failed, etc.)
|
|
print(json.dumps({"error": f"import torch failed: {e}"}))
|
|
sys.exit(1)
|
|
|
|
data = {
|
|
"cuda_available": bool(torch.cuda.is_available()),
|
|
"device_count": int(torch.cuda.device_count()),
|
|
}
|
|
print(json.dumps(data))
|
|
# Exit code 0 -> cuda_available is True
|
|
# Exit code 2 -> cuda_available is False
|
|
sys.exit(0 if data["cuda_available"] else 2)
|
|
'
|
|
)"
|
|
GPU_RC=$?
|
|
# echo "podman exec exit code: $GPU_RC"
|
|
# echo "GPU_JSON: $GPU_JSON"
|
|
if [ "$GPU_RC" -eq 0 ]; then
|
|
echo "GPU is available in container $CTR_NAME (cuda_available == true)."
|
|
elif [ "$GPU_RC" -eq 2 ]; then
|
|
echo "ERROR: CUDA GPU is NOT available inside the container." >&2
|
|
echo "Details: $GPU_JSON" >&2
|
|
echo "This may be due to missing NVIDIA CDI configuration or SELinux labeling." >&2
|
|
exit 1
|
|
else
|
|
echo "ERROR: podman exec GPU test failed (exit code $GPU_RC)." >&2
|
|
echo "Details: $GPU_JSON" >&2
|
|
echo "Container logs for debugging:" >&2
|
|
podman logs "$CTR_NAME" || true
|
|
exit 1
|
|
fi
|
|
|
|
# Python API /health
|
|
HEALTH_JSON="$(curl -fsS "$HEALTH_URL")"
|
|
echo "$HEALTH_JSON"
|
|
if ! printf '%s' "$HEALTH_JSON" | grep -q '"status":"ok"'; then
|
|
echo "ERROR: /health endpoint did not report status \"ok\"." >&2
|
|
exit 1
|
|
fi
|
|
|
|
# Python API /embed
|
|
EMBED_URL="http://$HOST_LOCAL_IP:$PYTORCH_HOST_PORT/embed-texts"
|
|
EMBED_JSON="$(curl -fsS -X POST "$EMBED_URL" \
|
|
-H "Content-Type: application/json" \
|
|
-d '{"texts":["hello world from colnomic"]}')"
|
|
echo "$EMBED_JSON"
|
|
if ! printf '%s' "$EMBED_JSON" | grep -q '"results"'; then
|
|
echo "ERROR: /embed endpoint did not return embeddings as expected." >&2
|
|
exit 1
|
|
fi
|
|
|
|
# Generate systemd service files
|
|
cd "$USER_SYSTEMD_DIR"
|
|
podman generate systemd --name --new --files "$POD_NAME"
|
|
echo "Generated systemd service files (rc=$?)"
|
|
|
|
# Stop & remove live pod and containers
|
|
podman pod stop --ignore --time 15 "$POD_NAME"
|
|
podman pod rm -f --ignore "$POD_NAME"
|
|
if podman pod exists "$POD_NAME"; then
|
|
echo "ERROR: Pod $POD_NAME still exists." >&2
|
|
exit 1
|
|
else
|
|
echo "Stopped & removed live pod $POD_NAME and containers"
|
|
fi
|
|
|
|
# Enable systemd service
|
|
systemctl --user daemon-reload
|
|
systemctl --user enable --now "pod-${POD_NAME}.service"
|
|
systemctl --user is-enabled "pod-$POD_NAME.service"
|
|
systemctl --user is-active "pod-$POD_NAME.service"
|
|
echo "Enabled systemd service pod-${POD_NAME}.service (rc=$?)"
|
|
echo "To view status: systemctl --user status pod-${POD_NAME}.service"
|
|
echo "To view logs: journalctl --user -u pod-${POD_NAME}.service -f"
|
|
systemctl --user enable --now "container-${CTR_NAME}.service"
|
|
systemctl --user is-enabled "container-${CTR_NAME}.service"
|
|
systemctl --user is-active "container-${CTR_NAME}.service"
|
|
echo "Enabled systemd service container-${CTR_NAME}.service (rc=$?)"
|
|
echo "To view status: systemctl --user status container-${CTR_NAME}.service"
|
|
echo "To view logs: journalctl --user -u container-${CTR_NAME}.service -f"
|
|
|
|
echo "PyTorch API is reachable at http://$HOST_LOCAL_IP:$PYTORCH_HOST_PORT"
|